高雄市正義中學高中部 111 學年度第二學期第一次期中考數學科試題

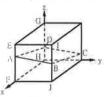
【高二社會組】

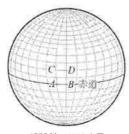

命題教師:陳坤燦

第一部分:單一選擇題(每題4分,共20分)

- 1. 已知點 P(2,4,-3)為空間中的一定點,O為原點,則下列敘述何者正確?
 - (1) OP在 XZ 平面的投影向量長=4
 - (2) P點到 z軸的距離=3
 - (3) P點在 VZ平面上的投影點為(0,-3,4)
 - (4) P點相關於 Z軸的對稱點為(-2, -4, -3)
 - (5) P點相關於 XV 平面的對稱點為(2,4,0)
- 2. 關於平面或空間的幾何敘述,下列哪一個選項正確?
 - (1)平面上,任意雨相異直線一定有公垂線(仍在該平面上)
 - (2)空間中一線段的垂直平分線只有一條
 - (3)空間中任意三相異點可決定一平面
 - (4)給定一平面 E及任意一點 P, 則恰有一平面過 P點且與 E垂直
 - (5)雨歪斜線既不平行也不相交
- 3. 給定相異兩點 $A \times B$,試問空間中能使 ΔPAB 成一正三角形的所有點P所成集合為下列哪一選項?
- (1)兩個點 (2)一線段 (3)一直線 (4)一圓 (5)一平面
- 4. 如附圖,在100公尺高且垂直地面的觀景臺上,俯望成直線的河流。已知觀景臺 底到河流的最近點是200公尺,求觀景臺上A點到河流的最短距離為多少?

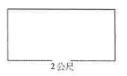
- $(1)100 (2)100\sqrt{3} (3)200 (4)100\sqrt{5} (5)300$
- 5. 皮克斯動畫工作室是一家專門製作電腦動畫的公司,1995年,皮克斯的第一部動畫長片《玩具總動員》上映,並且贏得奧斯卡獎後,陸續製作了《蟲蟲危機》、《海底總動員》、《怪獸電力公司》、《超人特攻隊》、《瓦力》、《天外奇蹟》、《腦筋急轉彎》、《可可夜總會》等片。而皮克斯所製作的動畫長片也贏得了包括15個奧斯卡獎,5座金球獎,11 次葛萊美獎在內的眾多獎項。在皮克斯開頭動畫中,跳跳燈也讓人印象深刻,如果跳跳燈一開始傾斜(圖一)到後來正朝向地上(圖二),請問地面上的圖案會如何變化?
- (1)橢圓⇒圓形 (2)雙曲線的部分圖形⇒拋物線
- (4)拋物線⇨圓形 (3)拋物線⇨雙曲線的部分圖形
- (5)圓形⇔橢圓


- 第二部分: 多重選擇題 (每題 5 分, 共 25 分)
- 1. 附圖為一正立方體,發長為 2,若 M , N 分別為正方形 CDHG 與正方形 ABCD 的中心,試選出正確的選項。


- (1) $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} + \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AE}$ (2) $\overrightarrow{MN} = -\frac{1}{2}\overrightarrow{AB} \frac{1}{2}\overrightarrow{AE}$ (3) $|\overrightarrow{MN}| = 2$
- (4) $\overrightarrow{MA} \cdot \overrightarrow{MN} = 2$ (5) $\angle AMN$ 小於 30°
- 2.空間中有一四面體 ABCD, 假設 AD 分別與 AB 和 AC 垂直, 請選出正確的選項。
 - (1) $\overrightarrow{DB} \cdot \overrightarrow{DC} = \overrightarrow{DA}^2 \overrightarrow{AB} \cdot \overrightarrow{AC}$
 - (2) 若 ∠BAC 是直角,則 ∠BDC 是直角
 - (3) 若 ∠BAC 是銳角,則 ∠BDC 是銳角
 - (4) 若 ∠BAC 是鈍角,則 ∠BDC 是鈍角
 - (5) 若 AB < DA 且 AC < DA, 則 ∠BDC 是銳角
- 3.如右圖,在四面體 ABCD 中,E、F、G 分別為線段 \overline{AC} 、 \overline{BD} 、 \overline{CD} 的中點,且滿足 $\overline{AD}=3$, $\overline{BC}=4$, $\overline{EF}=\sqrt{6}$ 。 設 \overline{DA} 與 \overline{CB} 的夾角為 θ ,試選出正確的選項。
 - (1) 直線 AD 與直線 BC 歪斜
 - (2) AB與EF平行
 - (3) AD與EG平行
- $(4) \cos \theta = \frac{1}{3}$
- $(5)\,\theta < \frac{\pi}{3}$
- 4. 將空間中一組歪斜線 \overline{AB} 、 \overline{CD} 投影於同一平面 \overline{EL} ,則下列何者為可能產生的圖形?
 - (1)兩條平行線 (2) 一直線與線外的一點 (3)兩點 (4)一直線 (5)相交的二直線
- 5. 下列各方程式中,請選出有實數解的選項?
 - $(1)|x-1|+|x-3|=1 \quad (2)|x-1|+|x-3|=3 \quad (3)|x-1|-|x-3|=1$
 - $(4)|x-1|-|x-3|=2 \quad (5)|x-1|-|x-3|=3$

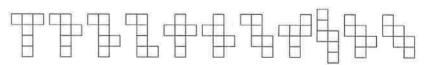
第三部分:填充題 (共45分)

- 1. 設A(-2,0,7),B(3,5,-3),若P點在 \overline{AB} 上且 \overline{AP} : \overline{BP} =3:2,則P點坐標為
- 2. $\overrightarrow{a} = (1, 1, 2)$, $\overrightarrow{b} = (3, 1, 3)$, $y \mid 2 \overrightarrow{a} 3 \overrightarrow{b} \mid = \underline{}$
- 3. 三點 A(1,3,5), B(-2,0,1), C(2,a,b) 共線,則 a+b=____。
- 4. 設 $\overline{a}=(0,3,4)$, $\overline{b}=(1,2,2)$, $\overline{c}=\overline{a}+t\overline{b}$,若 \overline{c} 平分 \overline{a} 和 \overline{b} 的夾角,則實數t 的值
- 5. 設 $\triangle ABC$ 三頂點的坐標為 A(1,5,2) ,B(4,-1,8) ,C(10,-1,-4) ,則 $\triangle ABC$ 的面積 為_____。
- 6. 設A(1,1,0),B(1,0,1),C(0,1,1) 是正四面體的三頂點,且D點在第一掛限, 試求第四個頂點D的坐標。
- 7. ABCD 為四面體,已知 \overline{AB} 垂直平面 BCD,又 $\overline{BD} \perp \overline{CD}$, $\overline{CD} = 3$, $\overline{BC} = 5$, $\overline{AB} = 12$,則 \overline{AD} 長為
- 8. 如附圖為一正立方體,被一平面截出一個四邊形ABCD,其中 $A \leftarrow \overline{EF} \perp \overline{EA} : \overline{AF} = 1 : 2 , D \leftarrow \overline{GH} \perp \overline{GD} : \overline{DH} = 2 : 1 , B \rightarrow \overline{IJ} + \mathbb{B}$,求 $\cos \angle DAB = \overline{DH} = 2 : 1 , B \rightarrow \overline{IJ} + \mathbb{B}$ 。

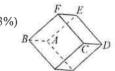


- 9. 在空間坐標中,設 xy 平面為一鏡面。有一光線通過點 P(1,2,1),射向鏡面上的點 O(0,0,0),經鏡面反射後通過點 R。若 $\overline{OR}=2\overline{PO}$,則 R 點坐標為
- 10. 空間中三點 $A(3,-5,5) \times B(1,-1,1) \times C(3,-2,2)$, 求 \overline{AB} 在 \overline{AC} 方向上的正射影為____。
- 11. 如附圖設想地球是圓球體,已知沿著赤道,經度10度間的距離是1113公里,那麼沿北緯20°線,經度10度間的距離為____
 (四拾五入至整數, cos 20°≈ 0.9397)

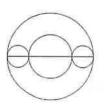
AB張長=1113公里 求CD弧長=?公里


- 12. 若 $\sqrt{22+\sqrt{22}}$ 介於自然數 n 與 n+1 之間,則 n=____。
- 13. 設 $0.027^a = 100$, $9^b = 1000$, 則 (3a+2)(2b-3) =
- 14. 若 $\frac{a}{a^{\frac{-1}{2}}}$ = 27²,則 a=____。
- 15. 一農夫想用 46 公尺長之竹籬圍成一長方形菜圃, 並在其中一邊正中央留著寬 2 公尺的出入口,如圖示。 此農夫所能圍成的最大面積為____平方公尺。

16. 聲音的強度是用每平方公尺多少瓦特 (W/m^2) 來衡量,一般人能感覺出聲音的最小強度為 $I_0=10^{-12}$ W/m^2 ;當測得的聲音強度為 $I(W/m^2)$ 時,所產生的噪音分貝數為 d,d 與 I 的關係為 $d=10\times\log\frac{I}{I_0}$,其中 I_0 是人耳勉強可聽到的聲音強度(10^{-12} W/m^2)。若一般人的交談音量約為 60 分貝,現有 3 個人在一起聊天,其音量強度約為 分貝。(四捨五入至整數位)


第四部分:混合題或非選擇題 (佔 10 分,此部分請寫出詳細計算過程) 說明:本部分共有 1 題組,每一組題配分標於題末。限在標示題號作答區內作答。 選擇題與非選擇題作圖部分使用 2B 鉛筆作答,更正時,應以橡皮擦擦拭,切 勿使用修正液(帶)。非選擇提請由左而右橫式書寫試,作答時需寫出計過程或 理由,否則將酌予扣分。

1. 立方體有 11 種不同的展開圖,換言之,有 11 種不同的方法切開空心立方體的 7 係棱而將其展平為平面圖形,如下圖。



右圖是空間中的一個正立方體,若 $A(\sqrt{2},2,0)$, $B(-\sqrt{2},2,0)$, $C(-\sqrt{2},-2,0)$,試求:

- (1) D 點坐標為 (3%)
- (2) 岩 \overline{EF} 之中點於正 z 軸上,則頂點 F 的坐標為 (3%)

 一直徑為48公尺的圓形草坪,欲將直徑分成三段, 並建造分別以此三段為直徑的圓形花圃,如圖所示, 則這三個圓形花圃應如何建造, 才能使三個圓形花圃的面積和為最小?(5%)

高雄市正義中學高中部 111 學年度第二學期第一次期中考數學科答案卷

【高二社會組】

命題教師:陳坤燦

高二年	班	座號	:	姓名:	

第一部分:單一選擇題 20% (每題 4分)

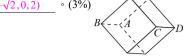
1	2	3	4	5
4	5	4	4	1

第二部分:多重選擇題25% (每答對一選項得1分,答錯不倒扣)

1	2	3	4	5
14	35	135	125	234

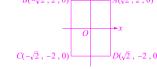
第三部分:填充題 45% (配分如下量尺)

1	(1,3,1)	2	5√3	3	$\frac{31}{3}$	4	$\frac{5}{3}$
5	54	6	$(\frac{4}{3}, \frac{4}{3}, \frac{4}{3})$	7	4√10	8	$\frac{1}{\sqrt{370}}$
9	(-2,-4,2)	10	(0,4,-4)	11	1046	12	5
13	-6	14	81	15	144	16	65


答對題數	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
得分	6	12	18	20	22	24	26	28	30	32	34	36	38	40	42	45

第四部分: 混合題或非選擇題 (佔 10 分,此部分請寫出詳細計算過程) 說明:本部分共有 1 題組,每一組題配分標於題末。限在標示題號作答區內作答。

非選擇提請由左而右橫式書寫,作答時需寫出計過程或理由,否則將酌予扣分。


- 1. 右圖是空間中的一個正立方體,若 $A(\sqrt{2},2,0)$, $B(-\sqrt{2},2,0)$, $C(-\sqrt{2},-2,0)$, 試求:
 - (1) D 點坐標為 $(\sqrt{2}, -2, 0)$ \circ (3%)
 - (2) 若 \overline{EF} 之中點於正 z 軸上,則頂點F 的坐標為 $(-\sqrt{2},0,2)$ 。(3%)

如右圖, $\overline{AB} = 2\sqrt{2}$, $\overline{BC} = 4 \Rightarrow \overline{AB}$ 為邊長, \overline{BC} 為對角線。

- (1) A, B, C, D 四點共平面
- ∴ \overline{AC} 之中點= \overline{BD} 之中點
- ... D 點坐標為 $(\sqrt{2},2,0)+(-\sqrt{2},-2,0)-(-\sqrt{2},2,0)=(\sqrt{2},-2,0)$,

發現A,B,C,D都在xy平面上,如右圖

- (2) 頂點 F 在 \overline{BC} 之中點的上方,且與 x 軸距離為 $\frac{1}{2}\overline{BC} = \frac{1}{2} \times 4 = 2$ $C(-\sqrt{2}, -2, 0)^{\perp}$
 - ∴ 頂點 F 的坐標為 $(-\sqrt{2},0,2)$

2.一直徑為48公尺的圓形草坪,欲將直徑分成三段,並建造分別以此三段為直徑的圓形花圃,如 圖所示,則這三個圓形花圃應如何建造,才能使三個圓形花圃的面積和為最小?(5%)

如右圖,設三圓形花圃的半徑分別為x,y,z,

則 $2x + 2y + 2z = 48 \Rightarrow x + y + z = 24$,

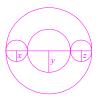
且三個圓形花圃的面積和為 $\pi(x^2 + y^2 + z^2)$ 。

由柯西不等式,得

$$(x^2 + y^2 + z^2)(1^2 + 1^2 + 1^2) \ge (x + y + z)^2$$

$$\Rightarrow$$
 $(x^2 + y^2 + z^2) \cdot 3 \ge 24^2$

$$\Rightarrow (x^2 + y^2 + z^2) \ge \frac{24^2}{3} = 192$$


... 三個圓形花圃的最小面積和為 192π平方公尺

此時
$$\frac{x}{1} = \frac{y}{1} = \frac{z}{1} \Rightarrow \Leftrightarrow x = t, y = t, z = t, t$$
 為實數,

代入x+y+z=24,

得 $t+t+t=24\Rightarrow t=8\Rightarrow x=8$, y=8, z=8,

即三個圓形花圃的半徑均為 8 公尺,如右圖。

