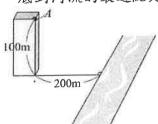
高雄市正義中學高中部 111 學年度第二學期第一次期中考數學科試題

【高二自然組】

命題教師:吳孟珍

第一部分: 單一選擇題 (每題4分,共20分)

- 1. 已知點 P(2,4,-3)為空間中的一定點,O為原點,則下列敘述何者正確?
 - (1) OP在xz平面的投影向量長=4
 - (2) P 點到 z 軸的距離=3
 - (3) P 點在 yz 平面上的投影點為(0,-3,4)
 - (4) P 點相關於 z 軸的對稱點為(-2,-4,-3)
 - (5) P 點相關於 xy 平面的對稱點為(2,4,0)
- 2. 關於平面或空間的幾何敘述,下列哪一個選項正確?
 - (1)平面上,任意兩相異直線一定有公垂線(仍在該平面上)
 - (2)空間中一線段的垂直平分線只有一條
 - (3)空間中任意三相異點可決定一平面
 - (4)給定一平面E及任意一點P,則恰有一平面過P點且與E垂直
 - (5)雨歪斜線既不平行也不相交
- 3. 給定相異兩點 $A \setminus B$,試問空間中能使 ΔPAB 成一正三角形的所有點P所成集合為下列哪一選項?
 - (1)兩個點 (2)一線段 (3)一直線 (4)一圓 (5)一平面
- 4. 如附圖,在100公尺高且垂直地面的觀景臺上,俯望成直線的河流。已知觀景臺底到河流的最近點是200公尺,求觀景臺上A點到河流的最短距離為多少?



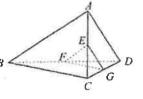
 $(1)100 \quad (2)100\sqrt{3} \quad (3)200 \quad (4)100\sqrt{5} \quad (5)300$

5. 設 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 是空間向量,且 \overrightarrow{a} · (\overrightarrow{b} × \overrightarrow{c})=6,求(\overrightarrow{a} + \overrightarrow{c})·(\overrightarrow{b} × \overrightarrow{c})= (1)0 (2)6 (3)12 (4)-6 (5)-12

第二部分: 多重選擇題 (每題 5 分, 共 25 分)

1. 附圖為一正立方體,稜長為 2,若 M, N 分別為正方形 CDHG 與正方形 ABCD 的中心,試選出正確的選項。

- (1) $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} + \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AE}$ (2) $\overrightarrow{MN} = -\frac{1}{2}\overrightarrow{AB} \frac{1}{2}\overrightarrow{AE}$ (3) $|\overrightarrow{MN}| = 2$
- (4) $\overrightarrow{MA} \cdot \overrightarrow{MN} = 3$ (5) $\angle AMN + 1\% \cdot 30^{\circ}$
- 2.空間中有一四面體 ABCD ,假設 \overrightarrow{AD} 分別與 \overrightarrow{AB} 和 \overrightarrow{AC} 垂直,請選出正確的選項。
- (1) $\overrightarrow{DB} \cdot \overrightarrow{DC} = \overrightarrow{DA}^2 \overrightarrow{AB} \cdot \overrightarrow{AC}$
- (2) 若 ∠BAC 是直角,則 ∠BDC 是直角
- (3) 若 ∠BAC 是銳角,則 ∠BDC 是銳角
- (4) 若 ∠BAC 是鈍角,則 ∠BDC 是鈍角
- (5) 若 \overline{AB} < \overline{DA} 且 \overline{AC} < \overline{DA} ,則 $\angle BDC$ 是銳角
- 3.如右圖,在四面體 ABCD 中,E、F、G 分別為線段 \overline{AC} 、 \overline{BD} 、 \overline{CD} 的中點,且滿足 $\overline{AD} = 3$, $\overline{BC} = 4$, $\overline{EF} = \sqrt{6}$ 。 設 \overline{DA} 與 \overline{CB} 的夾角為 θ ,試選出正確的選項。
- (1) 直線 AD 與直線 BC 歪斜
- (2) *AB* 與 *EF* 平行
- (3) AD 與 EG 平行
- (4) $\theta < \frac{\pi}{3}$
- $(5) \mid \overrightarrow{DA} \times \overrightarrow{CB} \mid = 10\sqrt{2}$



- 4. 下列哪些選項中的行列式與 $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ 相等?(多選)
 - $(1) \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$
- $(2) \begin{vmatrix} a_3 & a_2 & a_1 \\ b_3 & b_2 & b_1 \\ c_3 & c_2 & c_1 \end{vmatrix}$
- (3) $\begin{vmatrix} a_1 + a_2 & a_3 + a_1 & a_3 \\ b_1 + b_2 & b_3 + b_1 & b_3 \\ c_1 + c_2 & c_3 + c_1 & c_3 \end{vmatrix}$
- (4) $\frac{1}{2}\begin{vmatrix} 2a_1 & 2a_2 & 2a_3 \\ 2b_1 & b_2 & b_3 \\ 2c_1 & c_2 & c_3 \end{vmatrix}$ (5) $\begin{vmatrix} a_1 & 2a_2 & 2a_3 \\ \frac{1}{2}b_1 & b_2 & b_3 \\ \frac{1}{2}c_1 & c_2 & c_3 \end{vmatrix}$
- 5. 設 \overline{a} , \overline{b} 和 \overline{c} 為空間中不平行的非零向量,下列哪些正確?
 - (1) $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{a}$ (2) $|2\overrightarrow{a} \times 3\overrightarrow{b}| = |3\overrightarrow{a} \times 2\overrightarrow{b}|$ (3) $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{a} = 0$
 - $(4)|\overrightarrow{a}\times\overrightarrow{b}|=|\overrightarrow{a}||\overrightarrow{b}|\cos\theta \quad (5)|\overrightarrow{a}\cdot(\overrightarrow{b}\times\overrightarrow{c})|=|\overrightarrow{b}\cdot(\overrightarrow{c}\times\overrightarrow{a})|$

第三部分:填充題 (共45分)

1. 設A(-2,0,7),B(3,5,-3),若P點在 \overline{AB} 上且 \overline{AP} : $\overline{BP}=3:2$,則P點坐標為。

2. $\overrightarrow{a} = (1, 1, 2)$, $\overrightarrow{b} = (3, 1, 3)$, $y \mid 2 \overrightarrow{a} - 3 \overrightarrow{b} \mid = \underline{}$

3. 三點 A(1,3,5),B(-2,0,1),C(2,a,b) 共線,則 a+b=____。

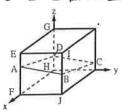
4. 設 $\overline{a} = (0,3,4)$, $\overline{b} = (1,2,2)$, $\overline{c} = \overline{a} + t\overline{b}$,若 \overline{c} 平分 \overline{a} 和 \overline{b} 的夾角,則實數t 的值 為 _____。

5. 設 $\triangle ABC$ 三頂點的坐標為 A(1,5,2), B(4,-1,8), C(10,-1,-4) ,則 $\triangle ABC$ 的面積為。

6. 設A(1,1,0),B(1,0,1),C(0,1,1) 是正四面體的三頂點,且D點在第一掛限,試求第四個頂點D的坐標。

7. \overrightarrow{ABCD} 為四面體,已知 \overrightarrow{AB} 垂直平面 \overrightarrow{BCD} ,又 $\overrightarrow{BD} \perp \overrightarrow{CD}$, $\overrightarrow{CD} = 3$, $\overrightarrow{BC} = 5$, $\overrightarrow{AB} = 12$,则 \overrightarrow{AD} 長為 。

8. 如圖,一正立方體,被一平面截出一個四邊形ABCD,其中 $A \in \overline{EF}$ 上, \overline{EA} : \overline{AF} = 1:2, \overline{DA} \overline{GB} : \overline{DH} = 2:1, \overline{BA} \overline{IJ} 中點,求 $\cos \angle DAB$ = 。



9. 在空間坐標中,設 xy 平面為一鏡面。有一光線通過點 P(1,2,1),射向鏡面上的點 O(0,0,0),經鏡面反射後通過點 R。若 $\overline{OR}=2\overline{PO}$,求 R 點坐標為

10. 空間中三點 A(3,-5,5)、B(1,-1,1)、C(3,-2,2),求 \overrightarrow{AB} 在 \overrightarrow{AC} 方向上的 正射影為 。

11. 承 10, B點在 AC 上投影點的坐標為___。

13. 由三向量
$$\overrightarrow{a}$$
 = (2,2,1) , \overrightarrow{b} = (2,-1,1) , \overrightarrow{c} = (1,3,1) ,所張開之平行六面體的體積為____。

14. 已知
$$\overline{a}$$
, \overline{b} , \overline{c} 三空間向量所張平行六面體的體積為 \overline{b} , \overline{b} , \overline{a} , \overline{b} , \overline{c} 三空間向量所張平行六面體的體積=

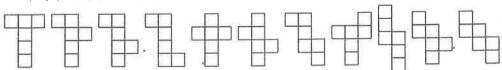
15. 若
$$\overrightarrow{a} = (-2,1,1)$$
與 $\overrightarrow{b} = (0,0,1)$, $\overrightarrow{c} = (k,-1,2)$ 共平面,則 k 的值為_____。

16. 已知
$$x$$
, y , $z \in \mathbb{R}$, 且 $x^2 + y^2 + z^2 = 24$, 試求 $\begin{vmatrix} x & y & z \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{vmatrix}$ 之最大值為_____。

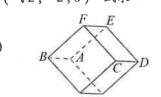
第四部分: 混合題或非選擇題 (佔 10 分,此部分請寫出詳細計算過程) 說明:本部分共有 1 題組,每一組題配分標於題末。限在標示題號作答區內作答。

選擇題與非選擇題作圖部分使用 2B 鉛筆作答,更正時,應以橡皮擦擦拭,切勿使用修正液(帶)。非選擇提請由左而右橫式書寫試,作答時需寫出計過程或理由,否則將酌予扣分。

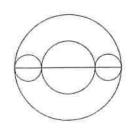
1. 立方體有 11 種不同的展開圖,換言之,有 11 種不同的方法切開空心立方體的 7 條棱而將其展平為平面圖形,如下圖。



. 右圖,是空間中的一個正立方體,若 $A(\sqrt{2},2,0)$, $B(-\sqrt{2},2,0)$, $C(-\sqrt{2},-2,0)$,試求:



2. 一直徑為48公尺的圓形草坪,欲將直徑分成三段,並建造分別以此三段為直徑的圓形花圃, 如圖所示,則這三個圓形花圃應如何建造,才能使三個圓形花圃的面積和為最小?(5%)



高雄市正義中學高中部 111 學年度第二學期第一次期中考數學科答案卷

命題教師:吳孟珍

【高二自然組】

高二年_____班 座號:_____ 姓名:_____

第一部分:單一選擇題 20% (每題 4分)

1	2	3	4	5
4	5	4	4	2

第二部分:多重選擇題25% (每答對一選項得1分,答錯不倒扣)

1	2	3	4	5		
14	35	135	15	235		

第三部分:填充題 45% (配分如下量尺)

1	(1,3,1)	2	5√3	3	$\frac{31}{3}$	4	$\frac{5}{3}$
5	54	6	$(\frac{4}{3}, \frac{4}{3}, \frac{4}{3})$	7	$4\sqrt{10}$	8	$\frac{1}{\sqrt{370}}$
9	(-2,-4,2)	10	(0,4,-4)	11	(3,-1,1)	12	(2,4,-4)或(-2, -4,4)
13	3	14	200	15	2	16	48

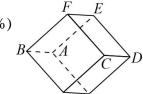
答對題數	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
得分	6	12	18	20	22	24	26	28	30	32	34	36	38	40	42	45

第四部分: 混合題或非選擇題 (佔 10 分,此部分請寫出詳細計算過程)

說明:本部分共有 1 題組,每一組題配分標於題末。限在標示題號作答區內作答。

非選擇提請由左而右橫式書寫,作答時需寫出計過程或理由,否則將酌予扣分。

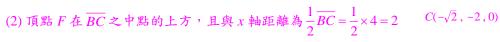
- 1. 右圖是空間中的一個正立方體,若 $A(\sqrt{2},2,0)$, $B(-\sqrt{2},2,0)$, $C(-\sqrt{2},-2,0)$,試求:
 - (1) D 點坐標為 $(\sqrt{2}, -2, 0)$ 。 (3%)
 - (2) 若 \overline{EF} 之中點於正 z 軸上,則頂點 F 的坐標為 $(-\sqrt{2},0,2)$ 。(3%)



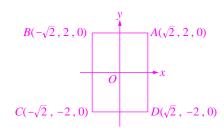
如右圖, $\overline{AB} = 2\sqrt{2}$, $\overline{BC} = 4 \Rightarrow \overline{AB}$ 為邊長, \overline{BC} 為對角線。

- (1)A,B,C,D 四點共平面
 - $∴ \overline{AC}$ 之中點= \overline{BD} 之中點
 - :. D 點坐標為 $(\sqrt{2},2,0)+(-\sqrt{2},-2,0)-(-\sqrt{2},2,0)=(\sqrt{2},-2,0)$,

發現A, B, C, D都在xy平面上,如右圖



∴ 頂點 F 的坐標為 $(-\sqrt{2},0,2)$



2.一直徑為48公尺的圓形草坪,欲將直徑分成三段,並建造分別以此三段為直徑的圓形花圃,如 圖所示,則這三個圓形花圃應如何建造,才能使三個圓形花圃的面積和為最小?(5%)

如右圖,設三圓形花圃的半徑分別為x,y,z,

則
$$2x + 2y + 2z = 48 \Rightarrow x + y + z = 24$$
,

且三個圓形花圃的面積和為 $\pi(x^2 + y^2 + z^2)$ 。

由柯西不等式,得

$$(x^2 + y^2 + z^2)(1^2 + 1^2 + 1^2) \ge (x + y + z)^2$$

$$\Rightarrow (x^2 + y^2 + z^2) \cdot 3 \ge 24^2$$

$$\Rightarrow (x^2 + y^2 + z^2) \ge \frac{24^2}{3} = 192$$

:. 三個圓形花圃的最小面積和為 192π平方公尺

此時
$$\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$$
 \Rightarrow $x = t$ $y = t$ $z = t$ t 為實數

代入x + y + z = 24,

即三個圓形花圃的半徑均為8公尺,如右圖。

